Integral of 8x^3sin(4x^4+2) dx
The solution
Detail solution
-
Let u=4x4+2.
Then let du=16x3dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(4x4+2)
-
Now simplify:
−2cos(4x4+2)
-
Add the constant of integration:
−2cos(4x4+2)+constant
The answer is:
−2cos(4x4+2)+constant
The answer (Indefinite)
[src]
/
| / 4 \
| 3 / 4 \ cos\4*x + 2/
| 8*x *sin\4*x + 2/ dx = C - -------------
| 2
/
∫8x3sin(4x4+2)dx=C−2cos(4x4+2)
The graph
cos(2) cos(6)
------ - ------
2 2
−2cos(6)+2cos(2)
=
cos(2) cos(6)
------ - ------
2 2
−2cos(6)+2cos(2)
Use the examples entering the upper and lower limits of integration.