Mister Exam

Other calculators

Integral of 8x^3sin(4x^4+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |     3    /   4    \   
 |  8*x *sin\4*x  + 2/ dx
 |                       
/                        
0                        
018x3sin(4x4+2)dx\int\limits_{0}^{1} 8 x^{3} \sin{\left(4 x^{4} + 2 \right)}\, dx
Integral((8*x^3)*sin(4*x^4 + 2), (x, 0, 1))
Detail solution
  1. Let u=4x4+2u = 4 x^{4} + 2.

    Then let du=16x3dxdu = 16 x^{3} dx and substitute du2\frac{du}{2}:

    sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

    Now substitute uu back in:

    cos(4x4+2)2- \frac{\cos{\left(4 x^{4} + 2 \right)}}{2}

  2. Now simplify:

    cos(4x4+2)2- \frac{\cos{\left(4 x^{4} + 2 \right)}}{2}

  3. Add the constant of integration:

    cos(4x4+2)2+constant- \frac{\cos{\left(4 x^{4} + 2 \right)}}{2}+ \mathrm{constant}


The answer is:

cos(4x4+2)2+constant- \frac{\cos{\left(4 x^{4} + 2 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                /   4    \
 |    3    /   4    \          cos\4*x  + 2/
 | 8*x *sin\4*x  + 2/ dx = C - -------------
 |                                   2      
/                                           
8x3sin(4x4+2)dx=Ccos(4x4+2)2\int 8 x^{3} \sin{\left(4 x^{4} + 2 \right)}\, dx = C - \frac{\cos{\left(4 x^{4} + 2 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
cos(2)   cos(6)
------ - ------
  2        2   
cos(6)2+cos(2)2- \frac{\cos{\left(6 \right)}}{2} + \frac{\cos{\left(2 \right)}}{2}
=
=
cos(2)   cos(6)
------ - ------
  2        2   
cos(6)2+cos(2)2- \frac{\cos{\left(6 \right)}}{2} + \frac{\cos{\left(2 \right)}}{2}
cos(2)/2 - cos(6)/2
Numerical answer [src]
-0.688158561598754
-0.688158561598754

    Use the examples entering the upper and lower limits of integration.