Mister Exam

Other calculators

Integral of 8x^3sin(4x^4+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |     3    /   4    \   
 |  8*x *sin\4*x  + 2/ dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} 8 x^{3} \sin{\left(4 x^{4} + 2 \right)}\, dx$$
Integral((8*x^3)*sin(4*x^4 + 2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                /   4    \
 |    3    /   4    \          cos\4*x  + 2/
 | 8*x *sin\4*x  + 2/ dx = C - -------------
 |                                   2      
/                                           
$$\int 8 x^{3} \sin{\left(4 x^{4} + 2 \right)}\, dx = C - \frac{\cos{\left(4 x^{4} + 2 \right)}}{2}$$
The graph
The answer [src]
cos(2)   cos(6)
------ - ------
  2        2   
$$- \frac{\cos{\left(6 \right)}}{2} + \frac{\cos{\left(2 \right)}}{2}$$
=
=
cos(2)   cos(6)
------ - ------
  2        2   
$$- \frac{\cos{\left(6 \right)}}{2} + \frac{\cos{\left(2 \right)}}{2}$$
cos(2)/2 - cos(6)/2
Numerical answer [src]
-0.688158561598754
-0.688158561598754

    Use the examples entering the upper and lower limits of integration.