Integral of tg^4(x) dx
The solution
The answer (Indefinite)
[src]
/
| 3
| 4 sin(x) sin (x)
| tan (x) dx = C + x - ------ + ---------
| cos(x) 3
/ 3*cos (x)
$$\int \tan^{4}{\left(x \right)}\, dx = C + x + \frac{\sin^{3}{\left(x \right)}}{3 \cos^{3}{\left(x \right)}} - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
3
sin(1) sin (1)
1 - ------ + ---------
cos(1) 3
3*cos (1)
$$- \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + 1 + \frac{\sin^{3}{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}}$$
=
3
sin(1) sin (1)
1 - ------ + ---------
cos(1) 3
3*cos (1)
$$- \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + 1 + \frac{\sin^{3}{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}}$$
1 - sin(1)/cos(1) + sin(1)^3/(3*cos(1)^3)
Use the examples entering the upper and lower limits of integration.