Integral of tg(4x-2) dx
The solution
Detail solution
-
Rewrite the integrand:
tan(4x−2)=cos(4x−2)sin(4x−2)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(4x−2).
Then let du=−4sin(4x−2)dx and substitute −4du:
∫(−4u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−4∫u1du
-
The integral of u1 is log(u).
So, the result is: −4log(u)
Now substitute u back in:
−4log(cos(4x−2))
Method #2
-
Let u=4x−2.
Then let du=4dx and substitute 4du:
∫4cos(u)sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)sin(u)du=4∫cos(u)sin(u)du
-
Let u=cos(u).
Then let du=−sin(u)du and substitute −du:
∫(−u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(u))
So, the result is: −4log(cos(u))
Now substitute u back in:
−4log(cos(4x−2))
-
Now simplify:
−4log(cos(4x−2))
-
Add the constant of integration:
−4log(cos(4x−2))+constant
The answer is:
−4log(cos(4x−2))+constant
The answer (Indefinite)
[src]
/
| log(cos(4*x - 2))
| tan(4*x - 2) dx = C - -----------------
| 4
/
∫tan(4x−2)dx=C−4log(cos(4x−2))
The graph
/ 2 \ / 2 \
log\1 + tan (2)/ log\1 + tan (10)/
- ---------------- + -----------------
8 8
−8log(1+tan2(2))+8log(tan2(10)+1)
=
/ 2 \ / 2 \
log\1 + tan (2)/ log\1 + tan (10)/
- ---------------- + -----------------
8 8
−8log(1+tan2(2))+8log(tan2(10)+1)
-log(1 + tan(2)^2)/8 + log(1 + tan(10)^2)/8
Use the examples entering the upper and lower limits of integration.