Mister Exam

Integral of sqrt(x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |    _______   
 |  \/ x + 4  dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sqrt{x + 4}\, dx$$
Integral(sqrt(x + 4), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                             3/2
 |   _______          2*(x + 4)   
 | \/ x + 4  dx = C + ------------
 |                         3      
/                                 
$$\int \sqrt{x + 4}\, dx = C + \frac{2 \left(x + 4\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
            ___
  16   10*\/ 5 
- -- + --------
  3       3    
$$- \frac{16}{3} + \frac{10 \sqrt{5}}{3}$$
=
=
            ___
  16   10*\/ 5 
- -- + --------
  3       3    
$$- \frac{16}{3} + \frac{10 \sqrt{5}}{3}$$
-16/3 + 10*sqrt(5)/3
Numerical answer [src]
2.12022659166597
2.12022659166597
The graph
Integral of sqrt(x+4) dx

    Use the examples entering the upper and lower limits of integration.