Mister Exam

Integral of xsin(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |       /x\   
 |  x*sin|-| dx
 |       \2/   
 |             
/              
0              
$$\int\limits_{0}^{1} x \sin{\left(\frac{x}{2} \right)}\, dx$$
Integral(x*sin(x/2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |      /x\               /x\          /x\
 | x*sin|-| dx = C + 4*sin|-| - 2*x*cos|-|
 |      \2/               \2/          \2/
 |                                        
/                                         
$$\int x \sin{\left(\frac{x}{2} \right)}\, dx = C - 2 x \cos{\left(\frac{x}{2} \right)} + 4 \sin{\left(\frac{x}{2} \right)}$$
The graph
The answer [src]
-2*cos(1/2) + 4*sin(1/2)
$$- 2 \cos{\left(\frac{1}{2} \right)} + 4 \sin{\left(\frac{1}{2} \right)}$$
=
=
-2*cos(1/2) + 4*sin(1/2)
$$- 2 \cos{\left(\frac{1}{2} \right)} + 4 \sin{\left(\frac{1}{2} \right)}$$
-2*cos(1/2) + 4*sin(1/2)
Numerical answer [src]
0.162537030636067
0.162537030636067
The graph
Integral of xsin(x/2) dx

    Use the examples entering the upper and lower limits of integration.