Mister Exam

Integral of xsin(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |       /x\   
 |  x*sin|-| dx
 |       \2/   
 |             
/              
0              
01xsin(x2)dx\int\limits_{0}^{1} x \sin{\left(\frac{x}{2} \right)}\, dx
Integral(x*sin(x/2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x2)\operatorname{dv}{\left(x \right)} = \sin{\left(\frac{x}{2} \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Let u=x2u = \frac{x}{2}.

      Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

      2sin(u)du\int 2 \sin{\left(u \right)}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=2sin(u)du\int \sin{\left(u \right)}\, du = 2 \int \sin{\left(u \right)}\, du

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: 2cos(u)- 2 \cos{\left(u \right)}

      Now substitute uu back in:

      2cos(x2)- 2 \cos{\left(\frac{x}{2} \right)}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (2cos(x2))dx=2cos(x2)dx\int \left(- 2 \cos{\left(\frac{x}{2} \right)}\right)\, dx = - 2 \int \cos{\left(\frac{x}{2} \right)}\, dx

    1. Let u=x2u = \frac{x}{2}.

      Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

      2cos(u)du\int 2 \cos{\left(u \right)}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=2cos(u)du\int \cos{\left(u \right)}\, du = 2 \int \cos{\left(u \right)}\, du

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: 2sin(u)2 \sin{\left(u \right)}

      Now substitute uu back in:

      2sin(x2)2 \sin{\left(\frac{x}{2} \right)}

    So, the result is: 4sin(x2)- 4 \sin{\left(\frac{x}{2} \right)}

  3. Add the constant of integration:

    2xcos(x2)+4sin(x2)+constant- 2 x \cos{\left(\frac{x}{2} \right)} + 4 \sin{\left(\frac{x}{2} \right)}+ \mathrm{constant}


The answer is:

2xcos(x2)+4sin(x2)+constant- 2 x \cos{\left(\frac{x}{2} \right)} + 4 \sin{\left(\frac{x}{2} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                        
 |      /x\               /x\          /x\
 | x*sin|-| dx = C + 4*sin|-| - 2*x*cos|-|
 |      \2/               \2/          \2/
 |                                        
/                                         
xsin(x2)dx=C2xcos(x2)+4sin(x2)\int x \sin{\left(\frac{x}{2} \right)}\, dx = C - 2 x \cos{\left(\frac{x}{2} \right)} + 4 \sin{\left(\frac{x}{2} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.5
The answer [src]
-2*cos(1/2) + 4*sin(1/2)
2cos(12)+4sin(12)- 2 \cos{\left(\frac{1}{2} \right)} + 4 \sin{\left(\frac{1}{2} \right)}
=
=
-2*cos(1/2) + 4*sin(1/2)
2cos(12)+4sin(12)- 2 \cos{\left(\frac{1}{2} \right)} + 4 \sin{\left(\frac{1}{2} \right)}
-2*cos(1/2) + 4*sin(1/2)
Numerical answer [src]
0.162537030636067
0.162537030636067
The graph
Integral of xsin(x/2) dx

    Use the examples entering the upper and lower limits of integration.