Integral of xsin(x/2) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(2x).
Then du(x)=1.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
-
Add the constant of integration:
−2xcos(2x)+4sin(2x)+constant
The answer is:
−2xcos(2x)+4sin(2x)+constant
The answer (Indefinite)
[src]
/
|
| /x\ /x\ /x\
| x*sin|-| dx = C + 4*sin|-| - 2*x*cos|-|
| \2/ \2/ \2/
|
/
∫xsin(2x)dx=C−2xcos(2x)+4sin(2x)
The graph
−2cos(21)+4sin(21)
=
−2cos(21)+4sin(21)
Use the examples entering the upper and lower limits of integration.