Mister Exam

Other calculators

Integral of 2*cos(x)-sqrt(x)+4/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  /             ___   4\   
 |  |2*cos(x) - \/ x  + -| dx
 |  \                   x/   
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \left(\left(- \sqrt{x} + 2 \cos{\left(x \right)}\right) + \frac{4}{x}\right)\, dx$$
Integral(2*cos(x) - sqrt(x) + 4/x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                          3/2
 | /             ___   4\                                2*x   
 | |2*cos(x) - \/ x  + -| dx = C + 2*sin(x) + 4*log(x) - ------
 | \                   x/                                  3   
 |                                                             
/                                                              
$$\int \left(\left(- \sqrt{x} + 2 \cos{\left(x \right)}\right) + \frac{4}{x}\right)\, dx = C - \frac{2 x^{\frac{3}{2}}}{3} + 4 \log{\left(x \right)} + 2 \sin{\left(x \right)}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
177.378059838921
177.378059838921

    Use the examples entering the upper and lower limits of integration.