4 / | | 1 | --------------- dx | ___ ___ | \/ 3 *\/ x + 4 | / -1
Integral(1/(sqrt(3)*sqrt(x) + 4), (x, -1, 4))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | / ___ ___\ ___ ___ | 1 8*log\4 + \/ 3 *\/ x / 2*\/ 3 *\/ x | --------------- dx = C - ---------------------- + ------------- | ___ ___ 3 3 | \/ 3 *\/ x + 4 | /
/ ___\ ___ / ___\ ___ 8*log\4 + 2*\/ 3 / 4*\/ 3 8*log\4 + I*\/ 3 / 2*I*\/ 3 - ------------------ + ------- + ------------------ - --------- 3 3 3 3
=
/ ___\ ___ / ___\ ___ 8*log\4 + 2*\/ 3 / 4*\/ 3 8*log\4 + I*\/ 3 / 2*I*\/ 3 - ------------------ + ------- + ------------------ - --------- 3 3 3 3
-8*log(4 + 2*sqrt(3))/3 + 4*sqrt(3)/3 + 8*log(4 + i*sqrt(3))/3 - 2*i*sqrt(3)/3
(0.87495726530422 - 0.0650215499529942j)
(0.87495726530422 - 0.0650215499529942j)
Use the examples entering the upper and lower limits of integration.