Mister Exam

Other calculators

Integral of dx/(sqrt(3)*sqrt(x)+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    ___   ___       
 |  \/ 3 *\/ x  + 4   
 |                    
/                     
-1                    
$$\int\limits_{-1}^{4} \frac{1}{\sqrt{3} \sqrt{x} + 4}\, dx$$
Integral(1/(sqrt(3)*sqrt(x) + 4), (x, -1, 4))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is .

              So, the result is:

            Now substitute back in:

          So, the result is:

        The result is:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                               
 |                               /      ___   ___\       ___   ___
 |        1                 8*log\4 + \/ 3 *\/ x /   2*\/ 3 *\/ x 
 | --------------- dx = C - ---------------------- + -------------
 |   ___   ___                        3                    3      
 | \/ 3 *\/ x  + 4                                                
 |                                                                
/                                                                 
$$\int \frac{1}{\sqrt{3} \sqrt{x} + 4}\, dx = C + \frac{2 \sqrt{3} \sqrt{x}}{3} - \frac{8 \log{\left(\sqrt{3} \sqrt{x} + 4 \right)}}{3}$$
The graph
The answer [src]
       /        ___\       ___        /        ___\         ___
  8*log\4 + 2*\/ 3 /   4*\/ 3    8*log\4 + I*\/ 3 /   2*I*\/ 3 
- ------------------ + ------- + ------------------ - ---------
          3               3              3                3    
$$- \frac{8 \log{\left(2 \sqrt{3} + 4 \right)}}{3} + \frac{4 \sqrt{3}}{3} - \frac{2 \sqrt{3} i}{3} + \frac{8 \log{\left(4 + \sqrt{3} i \right)}}{3}$$
=
=
       /        ___\       ___        /        ___\         ___
  8*log\4 + 2*\/ 3 /   4*\/ 3    8*log\4 + I*\/ 3 /   2*I*\/ 3 
- ------------------ + ------- + ------------------ - ---------
          3               3              3                3    
$$- \frac{8 \log{\left(2 \sqrt{3} + 4 \right)}}{3} + \frac{4 \sqrt{3}}{3} - \frac{2 \sqrt{3} i}{3} + \frac{8 \log{\left(4 + \sqrt{3} i \right)}}{3}$$
-8*log(4 + 2*sqrt(3))/3 + 4*sqrt(3)/3 + 8*log(4 + i*sqrt(3))/3 - 2*i*sqrt(3)/3
Numerical answer [src]
(0.87495726530422 - 0.0650215499529942j)
(0.87495726530422 - 0.0650215499529942j)

    Use the examples entering the upper and lower limits of integration.