Integral of sqrt(x)*sin(x^2) dx
The solution
The answer (Indefinite)
[src]
_ / | 4 \
/ 7/2 |_ | 7/8 | -x |
| x *Gamma(7/8)* | | | ----|
| ___ / 2\ 1 2 \3/2, 15/8 | 4 /
| \/ x *sin\x / dx = C + ---------------------------------------
| 4*Gamma(15/8)
/
∫xsin(x2)dx=C+4Γ(815)x27Γ(87)1F2(8723,815−4x4)
/ _ \
| |_ / 7/8 | \|
| 3/4 Gamma(-7/8)* | | | -1/4||
____ |2 *Gamma(7/8) 1 2 \3/2, 15/8 | /|
\/ pi *|--------------- + -----------------------------------|
| Gamma(5/8) ____ |
\ \/ pi *Gamma(1/8) /
--------------------------------------------------------------
4
4ππΓ(81)Γ(−87)1F2(8723,815−41)+Γ(85)243Γ(87)
=
/ _ \
| |_ / 7/8 | \|
| 3/4 Gamma(-7/8)* | | | -1/4||
____ |2 *Gamma(7/8) 1 2 \3/2, 15/8 | /|
\/ pi *|--------------- + -----------------------------------|
| Gamma(5/8) ____ |
\ \/ pi *Gamma(1/8) /
--------------------------------------------------------------
4
4ππΓ(81)Γ(−87)1F2(8723,815−41)+Γ(85)243Γ(87)
sqrt(pi)*(2^(3/4)*gamma(7/8)/gamma(5/8) + gamma(-7/8)*hyper((7/8,), (3/2, 15/8), -1/4)/(sqrt(pi)*gamma(1/8)))/4
Use the examples entering the upper and lower limits of integration.