Mister Exam

Other calculators

Integral of sqrt(2*x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5               
  /               
 |                
 |    _________   
 |  \/ 2*x - 1  dx
 |                
/                 
0                 
$$\int\limits_{0}^{5} \sqrt{2 x - 1}\, dx$$
Integral(sqrt(2*x - 1), (x, 0, 5))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (2*x - 1)   
 | \/ 2*x - 1  dx = C + ------------
 |                           3      
/                                   
$$\int \sqrt{2 x - 1}\, dx = C + \frac{\left(2 x - 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
    I
9 + -
    3
$$9 + \frac{i}{3}$$
=
=
    I
9 + -
    3
$$9 + \frac{i}{3}$$
9 + i/3
Numerical answer [src]
(8.99974781817928 + 0.333910010882274j)
(8.99974781817928 + 0.333910010882274j)

    Use the examples entering the upper and lower limits of integration.