Mister Exam

Other calculators

Integral of (-x)/(1-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   -x      
 |  ------ dx
 |       2   
 |  1 - x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\left(-1\right) x}{- x^{2} + 1}\, dx$$
Integral((-x)/(1 - x^2), (x, 0, 1))
Detail solution
We have the integral:
  /           
 |            
 |    -x      
 | 1*------ dx
 |        2   
 |   1 - x    
 |            
/             
Rewrite the integrand
         /  -1*2*x + 0  \
         |--------------|
         |   2          |
 -x      \- x  + 0*x + 1/
------ = ----------------
     2          2        
1 - x                    
or
  /             
 |              
 |    -x        
 | 1*------ dx  
 |        2    =
 |   1 - x      
 |              
/               
  
  /                 
 |                  
 |   -1*2*x + 0     
 | -------------- dx
 |    2             
 | - x  + 0*x + 1   
 |                  
/                   
--------------------
         2          
In the integral
  /                 
 |                  
 |   -1*2*x + 0     
 | -------------- dx
 |    2             
 | - x  + 0*x + 1   
 |                  
/                   
--------------------
         2          
do replacement
      2
u = -x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 1 + u                
 |                      
/             log(1 + u)
----------- = ----------
     2            2     
do backward replacement
  /                                
 |                                 
 |   -1*2*x + 0                    
 | -------------- dx               
 |    2                            
 | - x  + 0*x + 1                  
 |                        /      2\
/                      log\-1 + x /
-------------------- = ------------
         2                  2      
Solution is:
       /      2\
    log\-1 + x /
C + ------------
         2      
The answer (Indefinite) [src]
  /                           
 |                    /     2\
 |  -x             log\1 - x /
 | ------ dx = C + -----------
 |      2               2     
 | 1 - x                      
 |                            
/                             
$${{\log \left(1-x^2\right)}\over{2}}$$
The answer [src]
      pi*I
-oo - ----
       2  
$${\it \%a}$$
=
=
      pi*I
-oo - ----
       2  
$$-\infty - \frac{i \pi}{2}$$
Numerical answer [src]
-21.6989048028269
-21.6989048028269

    Use the examples entering the upper and lower limits of integration.