Mister Exam

Other calculators

Integral of 1/1+(sqrt(2x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 12                     
  /                     
 |                      
 |  /      _________\   
 |  \1 + \/ 2*x - 1 / dx
 |                      
/                       
4                       
$$\int\limits_{4}^{12} \left(\sqrt{2 x - 1} + 1\right)\, dx$$
Integral(1 + sqrt(2*x - 1), (x, 4, 12))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                         3/2
 | /      _________\              (2*x - 1)   
 | \1 + \/ 2*x - 1 / dx = C + x + ------------
 |                                     3      
/                                             
$$\int \left(\sqrt{2 x - 1} + 1\right)\, dx = C + x + \frac{\left(2 x - 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
        ___        ____
    7*\/ 7    23*\/ 23 
8 - ------- + ---------
       3          3    
$$- \frac{7 \sqrt{7}}{3} + 8 + \frac{23 \sqrt{23}}{3}$$
=
=
        ___        ____
    7*\/ 7    23*\/ 23 
8 - ------- + ---------
       3          3    
$$- \frac{7 \sqrt{7}}{3} + 8 + \frac{23 \sqrt{23}}{3}$$
8 - 7*sqrt(7)/3 + 23*sqrt(23)/3
Numerical answer [src]
38.5946219529135
38.5946219529135

    Use the examples entering the upper and lower limits of integration.