Mister Exam

Other calculators

Integral of sqrt(5+x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2             
  /             
 |              
 |    _______   
 |  \/ 5 + x  dx
 |              
/               
-5              
$$\int\limits_{-5}^{-2} \sqrt{x + 5}\, dx$$
Integral(sqrt(5 + x), (x, -5, -2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                             3/2
 |   _______          2*(5 + x)   
 | \/ 5 + x  dx = C + ------------
 |                         3      
/                                 
$$\int \sqrt{x + 5}\, dx = C + \frac{2 \left(x + 5\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
    ___
2*\/ 3 
$$2 \sqrt{3}$$
=
=
    ___
2*\/ 3 
$$2 \sqrt{3}$$
2*sqrt(3)
Numerical answer [src]
3.46410161513775
3.46410161513775

    Use the examples entering the upper and lower limits of integration.