Mister Exam

Other calculators:


sqrt(5+x)

Limit of the function sqrt(5+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       _______
 lim \/ 5 + x 
x->4+         
$$\lim_{x \to 4^+} \sqrt{x + 5}$$
Limit(sqrt(5 + x), x, 4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
       _______
 lim \/ 5 + x 
x->4+         
$$\lim_{x \to 4^+} \sqrt{x + 5}$$
3
$$3$$
= 3.0
       _______
 lim \/ 5 + x 
x->4-         
$$\lim_{x \to 4^-} \sqrt{x + 5}$$
3
$$3$$
= 3.0
= 3.0
Rapid solution [src]
3
$$3$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 4^-} \sqrt{x + 5} = 3$$
More at x→4 from the left
$$\lim_{x \to 4^+} \sqrt{x + 5} = 3$$
$$\lim_{x \to \infty} \sqrt{x + 5} = \infty$$
More at x→oo
$$\lim_{x \to 0^-} \sqrt{x + 5} = \sqrt{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{x + 5} = \sqrt{5}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{x + 5} = \sqrt{6}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{x + 5} = \sqrt{6}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{x + 5} = \infty i$$
More at x→-oo
Numerical answer [src]
3.0
3.0
The graph
Limit of the function sqrt(5+x)