Mister Exam

Integral of Xsqrt5+x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  /    ___    \   
 |  \x*\/ 5  + x/ dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \left(x + \sqrt{5} x\right)\, dx$$
Integral(x*sqrt(5) + x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                         2     ___  2
 | /    ___    \          x    \/ 5 *x 
 | \x*\/ 5  + x/ dx = C + -- + --------
 |                        2       2    
/                                      
$$\int \left(x + \sqrt{5} x\right)\, dx = C + \frac{x^{2}}{2} + \frac{\sqrt{5} x^{2}}{2}$$
The graph
The answer [src]
      ___
1   \/ 5 
- + -----
2     2  
$$\frac{1}{2} + \frac{\sqrt{5}}{2}$$
=
=
      ___
1   \/ 5 
- + -----
2     2  
$$\frac{1}{2} + \frac{\sqrt{5}}{2}$$
1/2 + sqrt(5)/2
Numerical answer [src]
1.61803398874989
1.61803398874989

    Use the examples entering the upper and lower limits of integration.