Mister Exam

Other calculators


x/sqrt(1+x)

Integral of x/sqrt(1+x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      x       
 |  --------- dx
 |    _______   
 |  \/ 1 + x    
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{x}{\sqrt{x + 1}}\, dx$$
Integral(x/sqrt(1 + x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                           3/2
 |     x                  _______   2*(1 + x)   
 | --------- dx = C - 2*\/ 1 + x  + ------------
 |   _______                             3      
 | \/ 1 + x                                     
 |                                              
/                                               
$$\int \frac{x}{\sqrt{x + 1}}\, dx = C + \frac{2 \left(x + 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{x + 1}$$
The graph
The answer [src]
        ___
4   2*\/ 2 
- - -------
3      3   
$$\frac{4}{3} - \frac{2 \sqrt{2}}{3}$$
=
=
        ___
4   2*\/ 2 
- - -------
3      3   
$$\frac{4}{3} - \frac{2 \sqrt{2}}{3}$$
4/3 - 2*sqrt(2)/3
Numerical answer [src]
0.39052429175127
0.39052429175127
The graph
Integral of x/sqrt(1+x) dx

    Use the examples entering the upper and lower limits of integration.