1 / | | x | --------- dx | _______ | \/ 1 + x | / 0
Integral(x/sqrt(1 + x), (x, 0, 1))
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 | x _______ 2*(1 + x) | --------- dx = C - 2*\/ 1 + x + ------------ | _______ 3 | \/ 1 + x | /
___ 4 2*\/ 2 - - ------- 3 3
=
___ 4 2*\/ 2 - - ------- 3 3
4/3 - 2*sqrt(2)/3
Use the examples entering the upper and lower limits of integration.