Mister Exam

Integral of sqrt(5-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1/2            
   /             
  |              
  |    _______   
  |  \/ 5 - x  dx
  |              
 /               
-1/2             
$$\int\limits_{- \frac{1}{2}}^{\frac{1}{2}} \sqrt{5 - x}\, dx$$
Integral(sqrt(5 - x), (x, -1/2, 1/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                             3/2
 |   _______          2*(5 - x)   
 | \/ 5 - x  dx = C - ------------
 |                         3      
/                                 
$$\int \sqrt{5 - x}\, dx = C - \frac{2 \left(5 - x\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
      ___        ____
  9*\/ 2    11*\/ 22 
- ------- + ---------
     2          6    
$$- \frac{9 \sqrt{2}}{2} + \frac{11 \sqrt{22}}{6}$$
=
=
      ___        ____
  9*\/ 2    11*\/ 22 
- ------- + ---------
     2          6    
$$- \frac{9 \sqrt{2}}{2} + \frac{11 \sqrt{22}}{6}$$
-9*sqrt(2)/2 + 11*sqrt(22)/6
Numerical answer [src]
2.23513452899736
2.23513452899736

    Use the examples entering the upper and lower limits of integration.