Integral of sqrt(3x-1) dx
The solution
Detail solution
-
Let u=3x−1.
Then let du=3dx and substitute 3du:
∫3udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=3∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 92u23
Now substitute u back in:
92(3x−1)23
-
Now simplify:
92(3x−1)23
-
Add the constant of integration:
92(3x−1)23+constant
The answer is:
92(3x−1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ 2*(3*x - 1)
| \/ 3*x - 1 dx = C + --------------
| 9
/
∫3x−1dx=C+92(3x−1)23
The graph
___
2*I 32*\/ 2
--- + --------
9 9
9322+92i
=
___
2*I 32*\/ 2
--- + --------
9 9
9322+92i
(5.02811796336524 + 0.222582701002079j)
(5.02811796336524 + 0.222582701002079j)
Use the examples entering the upper and lower limits of integration.