Mister Exam

Other calculators

Integral of sqrt(3*x-1)/3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 3*x - 1    
 |  ----------- dx
 |       3        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sqrt{3 x - 1}}{3}\, dx$$
Integral(sqrt(3*x - 1)/3, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |   _________                     3/2
 | \/ 3*x - 1           2*(3*x - 1)   
 | ----------- dx = C + --------------
 |      3                     27      
 |                                    
/                                     
$$\int \frac{\sqrt{3 x - 1}}{3}\, dx = C + \frac{2 \left(3 x - 1\right)^{\frac{3}{2}}}{27}$$
The graph
The answer [src]
          ___
2*I   4*\/ 2 
--- + -------
 27      27  
$$\frac{4 \sqrt{2}}{27} + \frac{2 i}{27}$$
=
=
          ___
2*I   4*\/ 2 
--- + -------
 27      27  
$$\frac{4 \sqrt{2}}{27} + \frac{2 i}{27}$$
2*i/27 + 4*sqrt(2)/27
Numerical answer [src]
(0.20942986400135 + 0.0739368680201338j)
(0.20942986400135 + 0.0739368680201338j)

    Use the examples entering the upper and lower limits of integration.