Mister Exam

Integral of sqrt(3x-10dx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    __________   
 |  \/ 3*x - 10  dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \sqrt{3 x - 10}\, dx$$
Integral(sqrt(3*x - 10), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                   3/2
 |   __________          2*(3*x - 10)   
 | \/ 3*x - 10  dx = C + ---------------
 |                              9       
/                                       
$$\int \sqrt{3 x - 10}\, dx = C + \frac{2 \left(3 x - 10\right)^{\frac{3}{2}}}{9}$$
The graph
The answer [src]
         ___          ____
  14*I*\/ 7    20*I*\/ 10 
- ---------- + -----------
      9             9     
$$- \frac{14 \sqrt{7} i}{9} + \frac{20 \sqrt{10} i}{9}$$
=
=
         ___          ____
  14*I*\/ 7    20*I*\/ 10 
- ---------- + -----------
      9             9     
$$- \frac{14 \sqrt{7} i}{9} + \frac{20 \sqrt{10} i}{9}$$
-14*i*sqrt(7)/9 + 20*i*sqrt(10)/9
Numerical answer [src]
(0.0 + 2.91167053871815j)
(0.0 + 2.91167053871815j)

    Use the examples entering the upper and lower limits of integration.