Mister Exam

Derivative of sqrt(3x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ 3*x - 1 
3x1\sqrt{3 x - 1}
d /  _________\
--\\/ 3*x - 1 /
dx             
ddx3x1\frac{d}{d x} \sqrt{3 x - 1}
Detail solution
  1. Let u=3x1u = 3 x - 1.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(3x1)\frac{d}{d x} \left(3 x - 1\right):

    1. Differentiate 3x13 x - 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

      The result is: 33

    The result of the chain rule is:

    323x1\frac{3}{2 \sqrt{3 x - 1}}

  4. Now simplify:

    323x1\frac{3}{2 \sqrt{3 x - 1}}


The answer is:

323x1\frac{3}{2 \sqrt{3 x - 1}}

The graph
02468-8-6-4-2-1010010
The first derivative [src]
      3      
-------------
    _________
2*\/ 3*x - 1 
323x1\frac{3}{2 \sqrt{3 x - 1}}
The second derivative [src]
      -9       
---------------
            3/2
4*(-1 + 3*x)   
94(3x1)32- \frac{9}{4 \left(3 x - 1\right)^{\frac{3}{2}}}
The third derivative [src]
       81      
---------------
            5/2
8*(-1 + 3*x)   
818(3x1)52\frac{81}{8 \left(3 x - 1\right)^{\frac{5}{2}}}
The graph
Derivative of sqrt(3x-1)