Mister Exam

Other calculators


(-x)/(1+x^2)

Integral of (-x)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   -x      
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\left(-1\right) x}{x^{2} + 1}\, dx$$
Integral((-x)/(1 + x^2), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |  -x      
 | ------ dx
 |      2   
 | 1 + x    
 |          
/           
Rewrite the integrand
           /    2*x     \            
           |------------|      /0\   
           | 2          |      |-|   
 -x        \x  + 0*x + 1/      \1/   
------ = - -------------- + ---------
     2           2              2    
1 + x                       (-x)  + 1
or
  /           
 |            
 |  -x        
 | ------ dx  
 |      2    =
 | 1 + x      
 |            
/             
  
   /                
  |                 
  |     2*x         
- | ------------ dx 
  |  2              
  | x  + 0*x + 1    
  |                 
 /                  
--------------------
         2          
In the integral
   /                
  |                 
  |     2*x         
- | ------------ dx 
  |  2              
  | x  + 0*x + 1    
  |                 
 /                  
--------------------
         2          
do replacement
     2
u = x 
then
the integral =
   /                        
  |                         
  |   1                     
- | ----- du                
  | 1 + u                   
  |                         
 /              -log(1 + u) 
------------- = ------------
      2              2      
do backward replacement
   /                                
  |                                 
  |     2*x                         
- | ------------ dx                 
  |  2                              
  | x  + 0*x + 1                    
  |                        /     2\ 
 /                     -log\1 + x / 
-------------------- = -------------
         2                   2      
In the integral
0
do replacement
v = -x
then
the integral =
True
do backward replacement
True
Solution is:
       /     2\
    log\1 + x /
C - -----------
         2     
The answer (Indefinite) [src]
  /                           
 |                    /     2\
 |  -x             log\1 + x /
 | ------ dx = C - -----------
 |      2               2     
 | 1 + x                      
 |                            
/                             
$$\int \frac{\left(-1\right) x}{x^{2} + 1}\, dx = C - \frac{\log{\left(x^{2} + 1 \right)}}{2}$$
The graph
The answer [src]
-log(2) 
--------
   2    
$$- \frac{\log{\left(2 \right)}}{2}$$
=
=
-log(2) 
--------
   2    
$$- \frac{\log{\left(2 \right)}}{2}$$
-log(2)/2
Numerical answer [src]
-0.346573590279973
-0.346573590279973
The graph
Integral of (-x)/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.