Mister Exam

Integral of sqrt(2x)-3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6                 
  /                 
 |                  
 |  /  _____    \   
 |  \\/ 2*x  - 3/ dx
 |                  
/                   
0                   
$$\int\limits_{0}^{6} \left(\sqrt{2 x} - 3\right)\, dx$$
Integral(sqrt(2*x) - 3, (x, 0, 6))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                  ___  3/2
 | /  _____    \                2*\/ 2 *x   
 | \\/ 2*x  - 3/ dx = C - 3*x + ------------
 |                                   3      
/                                           
$$\int \left(\sqrt{2 x} - 3\right)\, dx = C + \frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - 3 x$$
The graph
The answer [src]
          ___
-18 + 8*\/ 3 
$$-18 + 8 \sqrt{3}$$
=
=
          ___
-18 + 8*\/ 3 
$$-18 + 8 \sqrt{3}$$
-18 + 8*sqrt(3)
Numerical answer [src]
-4.14359353944898
-4.14359353944898

    Use the examples entering the upper and lower limits of integration.