3 / | | x | ----------- dx | _________ | \/ 2*x - 3 | / -1
Integral(x/sqrt(2*x - 3), (x, -1, 3))
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 _________ | x (2*x - 3) 3*\/ 2*x - 3 | ----------- dx = C + ------------ + ------------- | _________ 6 2 | \/ 2*x - 3 | /
___ ___ 2*I*\/ 5 2*\/ 3 - --------- 3
=
___ ___ 2*I*\/ 5 2*\/ 3 - --------- 3
2*sqrt(3) - 2*i*sqrt(5)/3
(3.25819615073864 - 1.44092451072132j)
(3.25819615073864 - 1.44092451072132j)
Use the examples entering the upper and lower limits of integration.