Mister Exam

Other calculators

Integral of x/(sqrt(2x-3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3               
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 2*x - 3    
 |                
/                 
-1                
$$\int\limits_{-1}^{3} \frac{x}{\sqrt{2 x - 3}}\, dx$$
Integral(x/sqrt(2*x - 3), (x, -1, 3))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                               3/2       _________
 |      x               (2*x - 3)      3*\/ 2*x - 3 
 | ----------- dx = C + ------------ + -------------
 |   _________               6               2      
 | \/ 2*x - 3                                       
 |                                                  
/                                                   
$$\int \frac{x}{\sqrt{2 x - 3}}\, dx = C + \frac{\left(2 x - 3\right)^{\frac{3}{2}}}{6} + \frac{3 \sqrt{2 x - 3}}{2}$$
The graph
The answer [src]
                ___
    ___   2*I*\/ 5 
2*\/ 3  - ---------
              3    
$$2 \sqrt{3} - \frac{2 \sqrt{5} i}{3}$$
=
=
                ___
    ___   2*I*\/ 5 
2*\/ 3  - ---------
              3    
$$2 \sqrt{3} - \frac{2 \sqrt{5} i}{3}$$
2*sqrt(3) - 2*i*sqrt(5)/3
Numerical answer [src]
(3.25819615073864 - 1.44092451072132j)
(3.25819615073864 - 1.44092451072132j)

    Use the examples entering the upper and lower limits of integration.