Mister Exam

Other calculators

Integral of (4x+1)/(sqrt(2x-3)+7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6                   
  /                   
 |                    
 |      4*x + 1       
 |  --------------- dx
 |    _________       
 |  \/ 2*x - 3  + 7   
 |                    
/                     
2                     
264x+12x3+7dx\int\limits_{2}^{6} \frac{4 x + 1}{\sqrt{2 x - 3} + 7}\, dx
Integral((4*x + 1)/(sqrt(2*x - 3) + 7), (x, 2, 6))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x3u = \sqrt{2 x - 3}.

      Then let du=dx2x3du = \frac{dx}{\sqrt{2 x - 3}} and substitute dudu:

      4u(u22+32)+uu+7du\int \frac{4 u \left(\frac{u^{2}}{2} + \frac{3}{2}\right) + u}{u + 7}\, du

      1. Rewrite the integrand:

        4u(u22+32)+uu+7=2u214u+105735u+7\frac{4 u \left(\frac{u^{2}}{2} + \frac{3}{2}\right) + u}{u + 7} = 2 u^{2} - 14 u + 105 - \frac{735}{u + 7}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          2u2du=2u2du\int 2 u^{2}\, du = 2 \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: 2u33\frac{2 u^{3}}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (14u)du=14udu\int \left(- 14 u\right)\, du = - 14 \int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: 7u2- 7 u^{2}

        1. The integral of a constant is the constant times the variable of integration:

          105du=105u\int 105\, du = 105 u

        1. The integral of a constant times a function is the constant times the integral of the function:

          (735u+7)du=7351u+7du\int \left(- \frac{735}{u + 7}\right)\, du = - 735 \int \frac{1}{u + 7}\, du

          1. Let u=u+7u = u + 7.

            Then let du=dudu = du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u+7)\log{\left(u + 7 \right)}

          So, the result is: 735log(u+7)- 735 \log{\left(u + 7 \right)}

        The result is: 2u337u2+105u735log(u+7)\frac{2 u^{3}}{3} - 7 u^{2} + 105 u - 735 \log{\left(u + 7 \right)}

      Now substitute uu back in:

      14x+2(2x3)323+1052x3735log(2x3+7)+21- 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 105 \sqrt{2 x - 3} - 735 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21

    Method #2

    1. Rewrite the integrand:

      4x+12x3+7=4x2x3+7+12x3+7\frac{4 x + 1}{\sqrt{2 x - 3} + 7} = \frac{4 x}{\sqrt{2 x - 3} + 7} + \frac{1}{\sqrt{2 x - 3} + 7}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        4x2x3+7dx=4x2x3+7dx\int \frac{4 x}{\sqrt{2 x - 3} + 7}\, dx = 4 \int \frac{x}{\sqrt{2 x - 3} + 7}\, dx

        1. Let u=2x3u = \sqrt{2 x - 3}.

          Then let du=dx2x3du = \frac{dx}{\sqrt{2 x - 3}} and substitute dudu:

          u(u22+32)u+7du\int \frac{u \left(\frac{u^{2}}{2} + \frac{3}{2}\right)}{u + 7}\, du

          1. Rewrite the integrand:

            u(u22+32)u+7=u227u2+26182u+7\frac{u \left(\frac{u^{2}}{2} + \frac{3}{2}\right)}{u + 7} = \frac{u^{2}}{2} - \frac{7 u}{2} + 26 - \frac{182}{u + 7}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              u22du=u2du2\int \frac{u^{2}}{2}\, du = \frac{\int u^{2}\, du}{2}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u36\frac{u^{3}}{6}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (7u2)du=7udu2\int \left(- \frac{7 u}{2}\right)\, du = - \frac{7 \int u\, du}{2}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: 7u24- \frac{7 u^{2}}{4}

            1. The integral of a constant is the constant times the variable of integration:

              26du=26u\int 26\, du = 26 u

            1. The integral of a constant times a function is the constant times the integral of the function:

              (182u+7)du=1821u+7du\int \left(- \frac{182}{u + 7}\right)\, du = - 182 \int \frac{1}{u + 7}\, du

              1. Let u=u+7u = u + 7.

                Then let du=dudu = du and substitute dudu:

                1udu\int \frac{1}{u}\, du

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                Now substitute uu back in:

                log(u+7)\log{\left(u + 7 \right)}

              So, the result is: 182log(u+7)- 182 \log{\left(u + 7 \right)}

            The result is: u367u24+26u182log(u+7)\frac{u^{3}}{6} - \frac{7 u^{2}}{4} + 26 u - 182 \log{\left(u + 7 \right)}

          Now substitute uu back in:

          7x2+(2x3)326+262x3182log(2x3+7)+214- \frac{7 x}{2} + \frac{\left(2 x - 3\right)^{\frac{3}{2}}}{6} + 26 \sqrt{2 x - 3} - 182 \log{\left(\sqrt{2 x - 3} + 7 \right)} + \frac{21}{4}

        So, the result is: 14x+2(2x3)323+1042x3728log(2x3+7)+21- 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 104 \sqrt{2 x - 3} - 728 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21

      1. Let u=2x3u = \sqrt{2 x - 3}.

        Then let du=dx2x3du = \frac{dx}{\sqrt{2 x - 3}} and substitute dudu:

        uu+7du\int \frac{u}{u + 7}\, du

        1. Rewrite the integrand:

          uu+7=17u+7\frac{u}{u + 7} = 1 - \frac{7}{u + 7}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          1. The integral of a constant times a function is the constant times the integral of the function:

            (7u+7)du=71u+7du\int \left(- \frac{7}{u + 7}\right)\, du = - 7 \int \frac{1}{u + 7}\, du

            1. Let u=u+7u = u + 7.

              Then let du=dudu = du and substitute dudu:

              1udu\int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              Now substitute uu back in:

              log(u+7)\log{\left(u + 7 \right)}

            So, the result is: 7log(u+7)- 7 \log{\left(u + 7 \right)}

          The result is: u7log(u+7)u - 7 \log{\left(u + 7 \right)}

        Now substitute uu back in:

        2x37log(2x3+7)\sqrt{2 x - 3} - 7 \log{\left(\sqrt{2 x - 3} + 7 \right)}

      The result is: 14x+2(2x3)323+1052x3735log(2x3+7)+21- 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 105 \sqrt{2 x - 3} - 735 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21

  2. Now simplify:

    14x+2(2x3)323+1052x3735log(2x3+7)+21- 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 105 \sqrt{2 x - 3} - 735 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21

  3. Add the constant of integration:

    14x+2(2x3)323+1052x3735log(2x3+7)+21+constant- 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 105 \sqrt{2 x - 3} - 735 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21+ \mathrm{constant}


The answer is:

14x+2(2x3)323+1052x3735log(2x3+7)+21+constant- 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 105 \sqrt{2 x - 3} - 735 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                
 |                                                                                              3/2
 |     4*x + 1                          /      _________\                _________   2*(2*x - 3)   
 | --------------- dx = 21 + C - 735*log\7 + \/ 2*x - 3 / - 14*x + 105*\/ 2*x - 3  + --------------
 |   _________                                                                             3       
 | \/ 2*x - 3  + 7                                                                                 
 |                                                                                                 
/                                                                                                  
4x+12x3+7dx=C14x+2(2x3)323+1052x3735log(2x3+7)+21\int \frac{4 x + 1}{\sqrt{2 x - 3} + 7}\, dx = C - 14 x + \frac{2 \left(2 x - 3\right)^{\frac{3}{2}}}{3} + 105 \sqrt{2 x - 3} - 735 \log{\left(\sqrt{2 x - 3} + 7 \right)} + 21
The graph
2.06.02.53.03.54.04.55.05.5-20002000
The answer [src]
514/3 - 735*log(10) + 735*log(8)
735log(10)+5143+735log(8)- 735 \log{\left(10 \right)} + \frac{514}{3} + 735 \log{\left(8 \right)}
=
=
514/3 - 735*log(10) + 735*log(8)
735log(10)+5143+735log(8)- 735 \log{\left(10 \right)} + \frac{514}{3} + 735 \log{\left(8 \right)}
514/3 - 735*log(10) + 735*log(8)
Numerical answer [src]
7.32282311738916
7.32282311738916

    Use the examples entering the upper and lower limits of integration.