Integral of (4x+1)/(sqrt(2x-3)+7) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x−3.
Then let du=2x−3dx and substitute du:
∫u+74u(2u2+23)+udu
-
Rewrite the integrand:
u+74u(2u2+23)+u=2u2−14u+105−u+7735
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 32u3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−14u)du=−14∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −7u2
-
The integral of a constant is the constant times the variable of integration:
∫105du=105u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u+7735)du=−735∫u+71du
-
Let u=u+7.
Then let du=du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u+7)
So, the result is: −735log(u+7)
The result is: 32u3−7u2+105u−735log(u+7)
Now substitute u back in:
−14x+32(2x−3)23+1052x−3−735log(2x−3+7)+21
Method #2
-
Rewrite the integrand:
2x−3+74x+1=2x−3+74x+2x−3+71
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2x−3+74xdx=4∫2x−3+7xdx
-
Let u=2x−3.
Then let du=2x−3dx and substitute du:
∫u+7u(2u2+23)du
-
Rewrite the integrand:
u+7u(2u2+23)=2u2−27u+26−u+7182
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−27u)du=−27∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −47u2
-
The integral of a constant is the constant times the variable of integration:
∫26du=26u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u+7182)du=−182∫u+71du
-
Let u=u+7.
Then let du=du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u+7)
So, the result is: −182log(u+7)
The result is: 6u3−47u2+26u−182log(u+7)
Now substitute u back in:
−27x+6(2x−3)23+262x−3−182log(2x−3+7)+421
So, the result is: −14x+32(2x−3)23+1042x−3−728log(2x−3+7)+21
-
Let u=2x−3.
Then let du=2x−3dx and substitute du:
∫u+7udu
-
Rewrite the integrand:
u+7u=1−u+77
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u+77)du=−7∫u+71du
-
Let u=u+7.
Then let du=du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u+7)
So, the result is: −7log(u+7)
The result is: u−7log(u+7)
Now substitute u back in:
2x−3−7log(2x−3+7)
The result is: −14x+32(2x−3)23+1052x−3−735log(2x−3+7)+21
-
Now simplify:
−14x+32(2x−3)23+1052x−3−735log(2x−3+7)+21
-
Add the constant of integration:
−14x+32(2x−3)23+1052x−3−735log(2x−3+7)+21+constant
The answer is:
−14x+32(2x−3)23+1052x−3−735log(2x−3+7)+21+constant
The answer (Indefinite)
[src]
/
| 3/2
| 4*x + 1 / _________\ _________ 2*(2*x - 3)
| --------------- dx = 21 + C - 735*log\7 + \/ 2*x - 3 / - 14*x + 105*\/ 2*x - 3 + --------------
| _________ 3
| \/ 2*x - 3 + 7
|
/
∫2x−3+74x+1dx=C−14x+32(2x−3)23+1052x−3−735log(2x−3+7)+21
The graph
514/3 - 735*log(10) + 735*log(8)
−735log(10)+3514+735log(8)
=
514/3 - 735*log(10) + 735*log(8)
−735log(10)+3514+735log(8)
514/3 - 735*log(10) + 735*log(8)
Use the examples entering the upper and lower limits of integration.