Mister Exam

Integral of sin^5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     5      
 |  sin (x) dx
 |            
/             
0             
01sin5(x)dx\int\limits_{0}^{1} \sin^{5}{\left(x \right)}\, dx
Integral(sin(x)^5, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin5(x)=(1cos2(x))2sin(x)\sin^{5}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (1cos2(x))2sin(x)=sin(x)cos4(x)2sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} = \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u4)du\int \left(- u^{4}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2sin(x)cos2(x))dx=2sin(x)cos2(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 2cos3(x)3\frac{2 \cos^{3}{\left(x \right)}}{3}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos5(x)5+2cos3(x)3cos(x)- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))2sin(x)=sin(x)cos4(x)2sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} = \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u4)du\int \left(- u^{4}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2sin(x)cos2(x))dx=2sin(x)cos2(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 2cos3(x)3\frac{2 \cos^{3}{\left(x \right)}}{3}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos5(x)5+2cos3(x)3cos(x)- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

  3. Add the constant of integration:

    cos5(x)5+2cos3(x)3cos(x)+constant- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

cos5(x)5+2cos3(x)3cos(x)+constant- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                              5           3   
 |    5                      cos (x)   2*cos (x)
 | sin (x) dx = C - cos(x) - ------- + ---------
 |                              5          3    
/                                               
sin5(x)dx=Ccos5(x)5+2cos3(x)3cos(x)\int \sin^{5}{\left(x \right)}\, dx = C - \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
                 5           3   
8             cos (1)   2*cos (1)
-- - cos(1) - ------- + ---------
15               5          3    
cos(1)cos5(1)5+2cos3(1)3+815- \cos{\left(1 \right)} - \frac{\cos^{5}{\left(1 \right)}}{5} + \frac{2 \cos^{3}{\left(1 \right)}}{3} + \frac{8}{15}
=
=
                 5           3   
8             cos (1)   2*cos (1)
-- - cos(1) - ------- + ---------
15               5          3    
cos(1)cos5(1)5+2cos3(1)3+815- \cos{\left(1 \right)} - \frac{\cos^{5}{\left(1 \right)}}{5} + \frac{2 \cos^{3}{\left(1 \right)}}{3} + \frac{8}{15}
8/15 - cos(1) - cos(1)^5/5 + 2*cos(1)^3/3
Numerical answer [src]
0.0889743964515759
0.0889743964515759
The graph
Integral of sin^5x dx

    Use the examples entering the upper and lower limits of integration.