Mister Exam

Integral of exp(x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   x          
 |  e *sin(x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{x} \sin{\left(x \right)}\, dx$$
Integral(exp(x)*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                     x                  x
 |  x                 e *sin(x)   cos(x)*e 
 | e *sin(x) dx = C + --------- - ---------
 |                        2           2    
/                                          
$${{e^{x}\,\left(\sin x-\cos x\right)}\over{2}}$$
The graph
The answer [src]
1   e*sin(1)   e*cos(1)
- + -------- - --------
2      2          2    
$${{e\,\sin 1-e\,\cos 1}\over{2}}+{{1}\over{2}}$$
=
=
1   e*sin(1)   e*cos(1)
- + -------- - --------
2      2          2    
$$- \frac{e \cos{\left(1 \right)}}{2} + \frac{1}{2} + \frac{e \sin{\left(1 \right)}}{2}$$
Numerical answer [src]
0.909330673631479
0.909330673631479
The graph
Integral of exp(x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.