Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$5 \sin^{4}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
3 / 2 2 \
5*sin (x)*\- sin (x) + 4*cos (x)/
$$5 \left(- \sin^{2}{\left(x \right)} + 4 \cos^{2}{\left(x \right)}\right) \sin^{3}{\left(x \right)}$$
The third derivative
[src]
2 / 2 2 \
5*sin (x)*\- 13*sin (x) + 12*cos (x)/*cos(x)
$$5 \left(- 13 \sin^{2}{\left(x \right)} + 12 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)}$$