Mister Exam

Other calculators


sin^5(x)*sin^4(x)

Integral of sin^5(x)*sin^4(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     5       4      
 |  sin (x)*sin (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{4}{\left(x \right)} \sin^{5}{\left(x \right)}\, dx$$
Integral(sin(x)^5*sin(x)^4, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                             
 |                                        5         9           3           7   
 |    5       4                      6*cos (x)   cos (x)   4*cos (x)   4*cos (x)
 | sin (x)*sin (x) dx = C - cos(x) - --------- - ------- + --------- + ---------
 |                                       5          9          3           7    
/                                                                               
$$-{{\cos ^9x}\over{9}}+{{4\,\cos ^7x}\over{7}}-{{6\,\cos ^5x}\over{5 }}+{{4\,\cos ^3x}\over{3}}-\cos x$$
The graph
The answer [src]
                    5         9           3           7   
128            6*cos (1)   cos (1)   4*cos (1)   4*cos (1)
--- - cos(1) - --------- - ------- + --------- + ---------
315                5          9          3           7    
$${{128}\over{315}}-{{35\,\cos ^91-180\,\cos ^71+378\,\cos ^51-420\, \cos ^31+315\,\cos 1}\over{315}}$$
=
=
                    5         9           3           7   
128            6*cos (1)   cos (1)   4*cos (1)   4*cos (1)
--- - cos(1) - --------- - ------- + --------- + ---------
315                5          9          3           7    
$$- \cos{\left(1 \right)} - \frac{6 \cos^{5}{\left(1 \right)}}{5} - \frac{\cos^{9}{\left(1 \right)}}{9} + \frac{4 \cos^{7}{\left(1 \right)}}{7} + \frac{4 \cos^{3}{\left(1 \right)}}{3} + \frac{128}{315}$$
Numerical answer [src]
0.028342532187773
0.028342532187773
The graph
Integral of sin^5(x)*sin^4(x) dx

    Use the examples entering the upper and lower limits of integration.