Integral of sin3x/3 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(3x)dx=3∫sin(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
So, the result is: −9cos(3x)
-
Add the constant of integration:
−9cos(3x)+constant
The answer is:
−9cos(3x)+constant
The answer (Indefinite)
[src]
/
|
| sin(3*x) cos(3*x)
| -------- dx = C - --------
| 3 9
|
/
−9cos(3x)
1 cos(3*t)
- - --------
9 9
−9cos(3t)+91
=
1 cos(3*t)
- - --------
9 9
−9cos(3t)+91
Use the examples entering the upper and lower limits of integration.