Mister Exam

Integral of 3e^(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3*x   
 |  3*e    dx
 |           
/            
0            
013e3xdx\int\limits_{0}^{1} 3 e^{3 x}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    3e3xdx=3e3xdx\int 3 e^{3 x}\, dx = 3 \int e^{3 x}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      e3x3\frac{e^{3 x}}{3}

    So, the result is: e3xe^{3 x}

  2. Add the constant of integration:

    e3x+constante^{3 x}+ \mathrm{constant}


The answer is:

e3x+constante^{3 x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                     
 |    3*x           3*x
 | 3*e    dx = C + e   
 |                     
/                      
e3xe^{3\,x}
The graph
0.001.000.100.200.300.400.500.600.700.800.900100
The answer [src]
      3
-1 + e 
3(e3313)3\,\left({{e^3}\over{3}}-{{1}\over{3}}\right)
=
=
      3
-1 + e 
1+e3-1 + e^{3}
Numerical answer [src]
19.0855369231877
19.0855369231877
The graph
Integral of 3e^(3x) dx

    Use the examples entering the upper and lower limits of integration.