Mister Exam

Other calculators


4(2x-1)^2

Integral of 4(2x-1)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                
  /                
 |                 
 |             2   
 |  4*(2*x - 1)  dx
 |                 
/                  
1                  
134(2x1)2dx\int\limits_{1}^{3} 4 \left(2 x - 1\right)^{2}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    4(2x1)2dx=4(2x1)2dx\int 4 \left(2 x - 1\right)^{2}\, dx = 4 \int \left(2 x - 1\right)^{2}\, dx

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=2x1u = 2 x - 1.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        u24du\int \frac{u^{2}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u22du=u2du2\int \frac{u^{2}}{2}\, du = \frac{\int u^{2}\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u36\frac{u^{3}}{6}

        Now substitute uu back in:

        (2x1)36\frac{\left(2 x - 1\right)^{3}}{6}

      Method #2

      1. Rewrite the integrand:

        (2x1)2=4x24x+1\left(2 x - 1\right)^{2} = 4 x^{2} - 4 x + 1

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          4x2dx=4x2dx\int 4 x^{2}\, dx = 4 \int x^{2}\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

          So, the result is: 4x33\frac{4 x^{3}}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (4x)dx=4xdx\int \left(- 4 x\right)\, dx = - 4 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: 2x2- 2 x^{2}

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        The result is: 4x332x2+x\frac{4 x^{3}}{3} - 2 x^{2} + x

    So, the result is: 2(2x1)33\frac{2 \left(2 x - 1\right)^{3}}{3}

  2. Now simplify:

    2(2x1)33\frac{2 \left(2 x - 1\right)^{3}}{3}

  3. Add the constant of integration:

    2(2x1)33+constant\frac{2 \left(2 x - 1\right)^{3}}{3}+ \mathrm{constant}


The answer is:

2(2x1)33+constant\frac{2 \left(2 x - 1\right)^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                  3
 |            2          2*(2*x - 1) 
 | 4*(2*x - 1)  dx = C + ------------
 |                            3      
/                                    
4(4x332x2+x)4\,\left({{4\,x^3}\over{3}}-2\,x^2+x\right)
The graph
1.03.01.21.41.61.82.02.22.42.62.80200
The answer [src]
248/3
2483{{248}\over{3}}
=
=
248/3
2483\frac{248}{3}
Numerical answer [src]
82.6666666666667
82.6666666666667
The graph
Integral of 4(2x-1)^2 dx

    Use the examples entering the upper and lower limits of integration.