Integral of sinx-sin^3x/3 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin3(x))dx=−3∫sin3(x)dx
-
Rewrite the integrand:
sin3(x)=(1−cos2(x))sin(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u2−1)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
-
The integral of a constant is the constant times the variable of integration:
∫(−1)du=−u
The result is: 3u3−u
Now substitute u back in:
3cos3(x)−cos(x)
Method #2
-
Rewrite the integrand:
(1−cos2(x))sin(x)=−sin(x)cos2(x)+sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos2(x))dx=−∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: 3cos3(x)
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
The result is: 3cos3(x)−cos(x)
Method #3
-
Rewrite the integrand:
(1−cos2(x))sin(x)=−sin(x)cos2(x)+sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos2(x))dx=−∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: 3cos3(x)
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
The result is: 3cos3(x)−cos(x)
So, the result is: −9cos3(x)+3cos(x)
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
The result is: −9cos3(x)−32cos(x)
-
Now simplify:
−9(cos2(x)+6)cos(x)
-
Add the constant of integration:
−9(cos2(x)+6)cos(x)+constant
The answer is:
−9(cos2(x)+6)cos(x)+constant
The answer (Indefinite)
[src]
/
|
| / 3 \ 3
| | sin (x)| 2*cos(x) cos (x)
| |sin(x) - -------| dx = C - -------- - -------
| \ 3 / 3 9
|
/
∫(−3sin3(x)+sin(x))dx=C−9cos3(x)−32cos(x)
The graph
3
7 2*cos(1) cos (1)
- - -------- - -------
9 3 9
−32cos(1)−9cos3(1)+97
=
3
7 2*cos(1) cos (1)
- - -------- - -------
9 3 9
−32cos(1)−9cos3(1)+97
7/9 - 2*cos(1)/3 - cos(1)^3/9
Use the examples entering the upper and lower limits of integration.