Mister Exam

Other calculators

Integral of sinx-sin^3x/3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /            3   \   
 |  |         sin (x)|   
 |  |sin(x) - -------| dx
 |  \            3   /   
 |                       
/                        
0                        
01(sin3(x)3+sin(x))dx\int\limits_{0}^{1} \left(- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}\right)\, dx
Integral(sin(x) - sin(x)^3/3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (sin3(x)3)dx=sin3(x)dx3\int \left(- \frac{\sin^{3}{\left(x \right)}}{3}\right)\, dx = - \frac{\int \sin^{3}{\left(x \right)}\, dx}{3}

      1. Rewrite the integrand:

        sin3(x)=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

          (u21)du\int \left(u^{2} - 1\right)\, du

          1. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            1. The integral of a constant is the constant times the variable of integration:

              (1)du=u\int \left(-1\right)\, du = - u

            The result is: u33u\frac{u^{3}}{3} - u

          Now substitute uu back in:

          cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

        Method #2

        1. Rewrite the integrand:

          (1cos2(x))sin(x)=sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              (u2)du\int \left(- u^{2}\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u33- \frac{u^{3}}{3}

              Now substitute uu back in:

              cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

            So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

          1. The integral of sine is negative cosine:

            sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

          The result is: cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

        Method #3

        1. Rewrite the integrand:

          (1cos2(x))sin(x)=sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              (u2)du\int \left(- u^{2}\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u33- \frac{u^{3}}{3}

              Now substitute uu back in:

              cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

            So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

          1. The integral of sine is negative cosine:

            sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

          The result is: cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      So, the result is: cos3(x)9+cos(x)3- \frac{\cos^{3}{\left(x \right)}}{9} + \frac{\cos{\left(x \right)}}{3}

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    The result is: cos3(x)92cos(x)3- \frac{\cos^{3}{\left(x \right)}}{9} - \frac{2 \cos{\left(x \right)}}{3}

  2. Now simplify:

    (cos2(x)+6)cos(x)9- \frac{\left(\cos^{2}{\left(x \right)} + 6\right) \cos{\left(x \right)}}{9}

  3. Add the constant of integration:

    (cos2(x)+6)cos(x)9+constant- \frac{\left(\cos^{2}{\left(x \right)} + 6\right) \cos{\left(x \right)}}{9}+ \mathrm{constant}


The answer is:

(cos2(x)+6)cos(x)9+constant- \frac{\left(\cos^{2}{\left(x \right)} + 6\right) \cos{\left(x \right)}}{9}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                                               
 | /            3   \                        3   
 | |         sin (x)|          2*cos(x)   cos (x)
 | |sin(x) - -------| dx = C - -------- - -------
 | \            3   /             3          9   
 |                                               
/                                                
(sin3(x)3+sin(x))dx=Ccos3(x)92cos(x)3\int \left(- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}\right)\, dx = C - \frac{\cos^{3}{\left(x \right)}}{9} - \frac{2 \cos{\left(x \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
                  3   
7   2*cos(1)   cos (1)
- - -------- - -------
9      3          9   
2cos(1)3cos3(1)9+79- \frac{2 \cos{\left(1 \right)}}{3} - \frac{\cos^{3}{\left(1 \right)}}{9} + \frac{7}{9}
=
=
                  3   
7   2*cos(1)   cos (1)
- - -------- - -------
9      3          9   
2cos(1)3cos3(1)9+79- \frac{2 \cos{\left(1 \right)}}{3} - \frac{\cos^{3}{\left(1 \right)}}{9} + \frac{7}{9}
7/9 - 2*cos(1)/3 - cos(1)^3/9
Numerical answer [src]
0.400050839948908
0.400050839948908

    Use the examples entering the upper and lower limits of integration.