Mister Exam

Other calculators


(x²-1)³

Integral of (x²-1)³ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2             
  /             
 |              
 |          3   
 |  / 2    \    
 |  \x  - 1/  dx
 |              
/               
-1              
12(x21)3dx\int\limits_{-1}^{2} \left(x^{2} - 1\right)^{3}\, dx
Detail solution
  1. Rewrite the integrand:

    (x21)3=x63x4+3x21\left(x^{2} - 1\right)^{3} = x^{6} - 3 x^{4} + 3 x^{2} - 1

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x6dx=x77\int x^{6}\, dx = \frac{x^{7}}{7}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3x4)dx=3x4dx\int \left(- 3 x^{4}\right)\, dx = - 3 \int x^{4}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      So, the result is: 3x55- \frac{3 x^{5}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: x773x55+x3x\frac{x^{7}}{7} - \frac{3 x^{5}}{5} + x^{3} - x

  3. Add the constant of integration:

    x773x55+x3x+constant\frac{x^{7}}{7} - \frac{3 x^{5}}{5} + x^{3} - x+ \mathrm{constant}


The answer is:

x773x55+x3x+constant\frac{x^{7}}{7} - \frac{3 x^{5}}{5} + x^{3} - x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 |         3                      5    7
 | / 2    \            3       3*x    x 
 | \x  - 1/  dx = C + x  - x - ---- + --
 |                              5     7 
/                                       
x773x55+x3x{{x^7}\over{7}}-{{3\,x^5}\over{5}}+x^3-x
The graph
-1.00-0.75-0.50-0.252.000.000.250.500.751.001.251.501.75-5050
The answer [src]
162
---
 35
16235{{162}\over{35}}
=
=
162
---
 35
16235\frac{162}{35}
Numerical answer [src]
4.62857142857143
4.62857142857143
The graph
Integral of (x²-1)³ dx

    Use the examples entering the upper and lower limits of integration.