Mister Exam

Integral of -x-2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4            
  /            
 |             
 |  (-x - 2) dx
 |             
/              
-2             
24(x2)dx\int\limits_{-2}^{4} \left(- x - 2\right)\, dx
Integral(-x - 2, (x, -2, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (2)dx=2x\int \left(-2\right)\, dx = - 2 x

    The result is: x222x- \frac{x^{2}}{2} - 2 x

  2. Now simplify:

    x(x+4)2- \frac{x \left(x + 4\right)}{2}

  3. Add the constant of integration:

    x(x+4)2+constant- \frac{x \left(x + 4\right)}{2}+ \mathrm{constant}


The answer is:

x(x+4)2+constant- \frac{x \left(x + 4\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         2
 |                         x 
 | (-x - 2) dx = C - 2*x - --
 |                         2 
/                            
(x2)dx=Cx222x\int \left(- x - 2\right)\, dx = C - \frac{x^{2}}{2} - 2 x
The graph
-2.0-1.5-1.0-0.54.00.00.51.01.52.02.53.03.5-2020
The answer [src]
-18
18-18
=
=
-18
18-18
-18
Numerical answer [src]
-18.0
-18.0

    Use the examples entering the upper and lower limits of integration.