Mister Exam

Other calculators

Integral of (1-x^(-2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  /    1 \   
 |  |1 - --| dx
 |  |     2|   
 |  \    x /   
 |             
/              
0              
01(11x2)dx\int\limits_{0}^{1} \left(1 - \frac{1}{x^{2}}\right)\, dx
Integral(1 - 1/x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1x2)dx=1x2dx\int \left(- \frac{1}{x^{2}}\right)\, dx = - \int \frac{1}{x^{2}}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        1x2dx=1x\int \frac{1}{x^{2}}\, dx = - \frac{1}{x}

      So, the result is: 1x\frac{1}{x}

    The result is: x+1xx + \frac{1}{x}

  2. Add the constant of integration:

    x+1x+constantx + \frac{1}{x}+ \mathrm{constant}


The answer is:

x+1x+constantx + \frac{1}{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                       
 |                        
 | /    1 \              1
 | |1 - --| dx = C + x + -
 | |     2|              x
 | \    x /               
 |                        
/                         
(11x2)dx=C+x+1x\int \left(1 - \frac{1}{x^{2}}\right)\, dx = C + x + \frac{1}{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5000000050000000
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-1.3793236779486e+19
-1.3793236779486e+19

    Use the examples entering the upper and lower limits of integration.