Mister Exam

Integral of -x+2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |  (-x + 2) dx
 |             
/              
1              
12(2x)dx\int\limits_{1}^{2} \left(2 - x\right)\, dx
Integral(-x + 2, (x, 1, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      2dx=2x\int 2\, dx = 2 x

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    The result is: x22+2x- \frac{x^{2}}{2} + 2 x

  2. Now simplify:

    x(4x)2\frac{x \left(4 - x\right)}{2}

  3. Add the constant of integration:

    x(4x)2+constant\frac{x \left(4 - x\right)}{2}+ \mathrm{constant}


The answer is:

x(4x)2+constant\frac{x \left(4 - x\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         2
 |                         x 
 | (-x + 2) dx = C + 2*x - --
 |                         2 
/                            
(2x)dx=Cx22+2x\int \left(2 - x\right)\, dx = C - \frac{x^{2}}{2} + 2 x
The graph
1.002.001.101.201.301.401.501.601.701.801.9004
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5
The graph
Integral of -x+2 dx

    Use the examples entering the upper and lower limits of integration.