Mister Exam

Integral of log(10)(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  log(10)*x dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \log{\left(10 \right)}\, dx$$
Integral(log(10)*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is when :

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                    2        
 |                    x *log(10)
 | log(10)*x dx = C + ----------
 |                        2     
/                               
$$\int x \log{\left(10 \right)}\, dx = C + \frac{x^{2} \log{\left(10 \right)}}{2}$$
The graph
The answer [src]
log(10)
-------
   2   
$$\frac{\log{\left(10 \right)}}{2}$$
=
=
log(10)
-------
   2   
$$\frac{\log{\left(10 \right)}}{2}$$
log(10)/2
Numerical answer [src]
1.15129254649702
1.15129254649702

    Use the examples entering the upper and lower limits of integration.