2 / | | /log(x + 2)\ | |----------| | \ log(10) / | ------------ dx | x | / 6/5
Integral((log(x + 2)/log(10))/x, (x, 6/5, 2))
/ / pi*I\
| | x*e |
| - polylog|2, -------| + log(2)*log(x) for |x| < 1
| \ 2 /
|
| / pi*I\
| | x*e | /1\ 1
< - polylog|2, -------| - log(2)*log|-| for --- < 1
| \ 2 / \x/ |x|
|
/ | / pi*I\
| | | x*e | __0, 2 /1, 1 | \ __2, 0 / 1, 1 | \
| /log(x + 2)\ |- polylog|2, -------| + log(2)*/__ | | x| - log(2)*/__ | | x| otherwise
| |----------| | \ 2 / \_|2, 2 \ 0, 0 | / \_|2, 2 \0, 0 | /
| \ log(10) / \
| ------------ dx = C + -------------------------------------------------------------------------------------------------------
| x log(10)
|
/
2
2 pi
log (2) + ---
12 -polylog(2, -3/5) + log(2)*log(6/5)
------------- - -----------------------------------
log(10) log(10)
=
2
2 pi
log (2) + ---
12 -polylog(2, -3/5) + log(2)*log(6/5)
------------- - -----------------------------------
log(10) log(10)
(log(2)^2 + pi^2/12)/log(10) - (-polylog(2, -3/5) + log(2)*log(6/5))/log(10)
Use the examples entering the upper and lower limits of integration.