Mister Exam

Other calculators

Integral of log10(x^2+1)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                 
  /                 
 |                  
 |  /   / 2    \\   
 |  |log\x  + 1/|   
 |  |-----------|   
 |  \  log(10)  /   
 |  ------------- dx
 |        x         
 |                  
/                   
1                   
$$\int\limits_{1}^{3} \frac{\frac{1}{\log{\left(10 \right)}} \log{\left(x^{2} + 1 \right)}}{x}\, dx$$
Integral((log(x^2 + 1)/log(10))/x, (x, 1, 3))
The answer (Indefinite) [src]
  /                                           
 |                                            
 | /   / 2    \\                              
 | |log\x  + 1/|                              
 | |-----------|                 /    2  pi*I\
 | \  log(10)  /          polylog\2, x *e    /
 | ------------- dx = C - --------------------
 |       x                     2*log(10)      
 |                                            
/                                             
$$\int \frac{\frac{1}{\log{\left(10 \right)}} \log{\left(x^{2} + 1 \right)}}{x}\, dx = C - \frac{\operatorname{Li}_{2}\left(x^{2} e^{i \pi}\right)}{2 \log{\left(10 \right)}}$$
The graph
The answer [src]
         /      pi*I\        2    
  polylog\2, 9*e    /      pi     
- ------------------- - ----------
       2*log(10)        24*log(10)
$$- \frac{\pi^{2}}{24 \log{\left(10 \right)}} - \frac{\operatorname{Li}_{2}\left(9 e^{i \pi}\right)}{2 \log{\left(10 \right)}}$$
=
=
         /      pi*I\        2    
  polylog\2, 9*e    /      pi     
- ------------------- - ----------
       2*log(10)        24*log(10)
$$- \frac{\pi^{2}}{24 \log{\left(10 \right)}} - \frac{\operatorname{Li}_{2}\left(9 e^{i \pi}\right)}{2 \log{\left(10 \right)}}$$
-polylog(2, 9*exp_polar(pi*i))/(2*log(10)) - pi^2/(24*log(10))
Numerical answer [src]
0.67927929229153
0.67927929229153

    Use the examples entering the upper and lower limits of integration.