Mister Exam

Other calculators

Integral of 1/(x^7*√log10(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |         _________   
 |   7    /  log(x)    
 |  x *  /  -------    
 |     \/   log(10)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{x^{7} \sqrt{\frac{\log{\left(x \right)}}{\log{\left(10 \right)}}}}\, dx$$
Integral(1/(x^7*sqrt(log(x)/log(10))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                        /                
 |                                        |                 
 |        1                    _________  |       1         
 | ---------------- dx = C + \/ log(10) * | ------------- dx
 |        _________                       |  7   ________   
 |  7    /  log(x)                        | x *\/ log(x)    
 | x *  /  -------                        |                 
 |    \/   log(10)                       /                  
 |                                                          
/                                                           
$$\int \frac{1}{x^{7} \sqrt{\frac{\log{\left(x \right)}}{\log{\left(10 \right)}}}}\, dx = C + \sqrt{\log{\left(10 \right)}} \int \frac{1}{x^{7} \sqrt{\log{\left(x \right)}}}\, dx$$
The answer [src]
          ___   ____   _________
        \/ 6 *\/ pi *\/ log(10) 
-oo*I - ------------------------
                   6            
$$- \frac{\sqrt{6} \sqrt{\pi} \sqrt{\log{\left(10 \right)}}}{6} - \infty i$$
=
=
          ___   ____   _________
        \/ 6 *\/ pi *\/ log(10) 
-oo*I - ------------------------
                   6            
$$- \frac{\sqrt{6} \sqrt{\pi} \sqrt{\log{\left(10 \right)}}}{6} - \infty i$$
-oo*i - sqrt(6)*sqrt(pi)*sqrt(log(10))/6
Numerical answer [src]
(0.0 - 1.57874246426994e+113j)
(0.0 - 1.57874246426994e+113j)

    Use the examples entering the upper and lower limits of integration.