Mister Exam

Integral of logex dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     / x\   
 |  log\E / dx
 |            
/             
0             
01log(ex)dx\int\limits_{0}^{1} \log{\left(e^{x} \right)}\, dx
Integral(log(E^x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=exu = e^{x}.

      Then let du=exdxdu = e^{x} dx and substitute dudu:

      log(u)udu\int \frac{\log{\left(u \right)}}{u}\, du

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=1uu = \frac{1}{u}.

          Then let du=duu2du = - \frac{du}{u^{2}} and substitute du- du:

          (log(1u)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            log(1u)udu=log(1u)udu\int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du

            1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

              Then let du=duudu = - \frac{du}{u} and substitute du- du:

              (u)du\int \left(- u\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                udu=udu\int u\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              log(1u)22- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

            So, the result is: log(1u)22\frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

          Now substitute uu back in:

          log(u)22\frac{\log{\left(u \right)}^{2}}{2}

        Method #2

        1. Let u=log(u)u = \log{\left(u \right)}.

          Then let du=duudu = \frac{du}{u} and substitute dudu:

          udu\int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          Now substitute uu back in:

          log(u)22\frac{\log{\left(u \right)}^{2}}{2}

      Now substitute uu back in:

      log(ex)22\frac{\log{\left(e^{x} \right)}^{2}}{2}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(ex)u{\left(x \right)} = \log{\left(e^{x} \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

  2. Now simplify:

    log(ex)22\frac{\log{\left(e^{x} \right)}^{2}}{2}

  3. Add the constant of integration:

    log(ex)22+constant\frac{\log{\left(e^{x} \right)}^{2}}{2}+ \mathrm{constant}


The answer is:

log(ex)22+constant\frac{\log{\left(e^{x} \right)}^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                     2/ x\
 |    / x\          log \E /
 | log\E / dx = C + --------
 |                     2    
/                           
log(ex)dx=C+log(ex)22\int \log{\left(e^{x} \right)}\, dx = C + \frac{\log{\left(e^{x} \right)}^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5
The graph
Integral of logex dx

    Use the examples entering the upper and lower limits of integration.