Mister Exam

Other calculators

Integral of x(loge(x))^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |             2   
 |    / log(x)\    
 |  x*|-------|  dx
 |    |   / 1\|    
 |    \log\e //    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} x \left(\frac{\log{\left(x \right)}}{\log{\left(e^{1} \right)}}\right)^{2}\, dx$$
Integral(x*(log(x)/log(exp(1)))^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                                                  
 |            2           2    2    2       2       
 |   / log(x)\           x    x *log (x)   x *log(x)
 | x*|-------|  dx = C + -- + ---------- - ---------
 |   |   / 1\|           4        2            2    
 |   \log\e //                                      
 |                                                  
/                                                   
$$\int x \left(\frac{\log{\left(x \right)}}{\log{\left(e^{1} \right)}}\right)^{2}\, dx = C + \frac{x^{2} \log{\left(x \right)}^{2}}{2} - \frac{x^{2} \log{\left(x \right)}}{2} + \frac{x^{2}}{4}$$
The graph
The answer [src]
1/4
$$\frac{1}{4}$$
=
=
1/4
$$\frac{1}{4}$$
1/4
Numerical answer [src]
0.25
0.25

    Use the examples entering the upper and lower limits of integration.