Mister Exam

Other calculators


(-1)^x

Integral of (-1)^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |      x   
 |  (-1)  dx
 |          
/           
0           
01(1)xdx\int\limits_{0}^{1} \left(-1\right)^{x}\, dx
Integral((-1)^x, (x, 0, 1))
Detail solution
  1. The integral of an exponential function is itself divided by the natural logarithm of the base.

    (1)xdx=(1)xiπ\int \left(-1\right)^{x}\, dx = - \frac{\left(-1\right)^{x} i}{\pi}

  2. Now simplify:

    (1)x+32π\frac{\left(-1\right)^{x + \frac{3}{2}}}{\pi}

  3. Add the constant of integration:

    (1)x+32π+constant\frac{\left(-1\right)^{x + \frac{3}{2}}}{\pi}+ \mathrm{constant}


The answer is:

(1)x+32π+constant\frac{\left(-1\right)^{x + \frac{3}{2}}}{\pi}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                      x
 |     x          I*(-1) 
 | (-1)  dx = C - -------
 |                   pi  
/                        
(1)xdx=(1)xiπ+C\int \left(-1\right)^{x}\, dx = - \frac{\left(-1\right)^{x} i}{\pi} + C
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
2*I
---
 pi
2iπ\frac{2 i}{\pi}
=
=
2*I
---
 pi
2iπ\frac{2 i}{\pi}
2*i/pi
Numerical answer [src]
(6.22746185175318e-24 + 0.636619772367581j)
(6.22746185175318e-24 + 0.636619772367581j)
The graph
Integral of (-1)^x dx

    Use the examples entering the upper and lower limits of integration.