1 / | | 2 | ------ dx | sin(x) | / 0
Integral(2/sin(x), (x, 0, 1))
/ | | 2 | ------ dx | sin(x) | /
2 ------ sin(x)
sin(x)
2 2*sin(x)
------ = --------
sin(x) 2
sin (x) sin(a)^2 + cos(a)^2 = 1
2 2 sin (x) = 1 - cos (x)
2*sin(x) 2*sin(x) -------- = ----------- 2 2 sin (x) 1 - cos (x)
u = cos(x)
/ | | 2*sin(x) | ----------- dx | 2 = | 1 - cos (x) | /
/ | | 2*sin(x) | ----------- dx | 2 = | 1 - cos (x) | /
/ | | -2 | ------ du | 2 | 1 - u | /
-2 2*(-1) / 1 1 \
------ = ------*|----- + -----|
2 2 \1 - u 1 + u/
1 - u / / / | | | | -2 | 1 | 1 | ------ du = - | ----- du - | ----- du | 2 | 1 + u | 1 - u = | 1 - u | | | / / /
= -log(1 + u) + log(-1 + u)
u = cos(x)
/ | | 2 | ------ dx = -log(1 + cos(x)) + log(-1 + cos(x)) + C0 | sin(x) | /
/ | | 2 | ------ dx = C - log(1 + cos(x)) + log(-1 + cos(x)) | sin(x) | /
Use the examples entering the upper and lower limits of integration.