Mister Exam

Integral of e^(3sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   3*sin(x)   
 |  e         dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{3 \sin{\left(x \right)}}\, dx$$
Integral(E^(3*sin(x)), (x, 0, 1))
The answer (Indefinite) [src]
$$\int {e^{3\,\sin x}}{\;dx}$$
The answer [src]
  1             
  /             
 |              
 |   3*sin(x)   
 |  e         dx
 |              
/               
0               
$$\int_{0}^{1}{e^{3\,\sin x}\;dx}$$
=
=
  1             
  /             
 |              
 |   3*sin(x)   
 |  e         dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{3 \sin{\left(x \right)}}\, dx$$
Numerical answer [src]
5.10551952291469
5.10551952291469

    Use the examples entering the upper and lower limits of integration.