Mister Exam

Other calculators


e^3sinx*cox

Integral of e^3sinx*cox dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |   3                 
 |  e *sin(x)*cos(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} e^{3} \sin{\left(x \right)} \cos{\left(x \right)}\, dx$$
Integral(E^3*sin(x)*cos(x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Method #2

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                              2     3
 |  3                        cos (x)*e 
 | e *sin(x)*cos(x) dx = C - ----------
 |                               2     
/                                      
$$-{{e^3\,\cos ^2x}\over{2}}$$
The graph
The answer [src]
   2     3
sin (1)*e 
----------
    2     
$$e^3\,\left({{1}\over{2}}-{{\cos ^21}\over{2}}\right)$$
=
=
   2     3
sin (1)*e 
----------
    2     
$$\frac{e^{3} \sin^{2}{\left(1 \right)}}{2}$$
Numerical answer [src]
7.11101739353076
7.11101739353076
The graph
Integral of e^3sinx*cox dx

    Use the examples entering the upper and lower limits of integration.