Mister Exam

Other calculators


e^(3sinx+1)cosx

Integral of e^(3sinx+1)cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |   3*sin(x) + 1          
 |  e            *cos(x) dx
 |                         
/                          
0                          
$$\int\limits_{0}^{1} e^{3 \sin{\left(x \right)} + 1} \cos{\left(x \right)}\, dx$$
Integral(E^(3*sin(x) + 1)*cos(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of a constant is the constant times the variable of integration:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of a constant is the constant times the variable of integration:

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                  3*sin(x)
 |  3*sin(x) + 1                 e*e        
 | e            *cos(x) dx = C + -----------
 |                                    3     
/                                           
$$\int e^{3 \sin{\left(x \right)} + 1} \cos{\left(x \right)}\, dx = C + \frac{e e^{3 \sin{\left(x \right)}}}{3}$$
The graph
The answer [src]
         3*sin(1)
  e   e*e        
- - + -----------
  3        3     
$$- \frac{e}{3} + \frac{e e^{3 \sin{\left(1 \right)}}}{3}$$
=
=
         3*sin(1)
  e   e*e        
- - + -----------
  3        3     
$$- \frac{e}{3} + \frac{e e^{3 \sin{\left(1 \right)}}}{3}$$
Numerical answer [src]
10.4051884082202
10.4051884082202
The graph
Integral of e^(3sinx+1)cosx dx

    Use the examples entering the upper and lower limits of integration.