Integral of tg^6x dx
The solution
The answer (Indefinite)
[src]
/
| 3 5
| 6 sin(x) sin (x) sin (x)
| tan (x) dx = C - x + ------ - --------- + ---------
| cos(x) 3 5
/ 3*cos (x) 5*cos (x)
$$\int \tan^{6}{\left(x \right)}\, dx = C - x + \frac{\sin^{5}{\left(x \right)}}{5 \cos^{5}{\left(x \right)}} - \frac{\sin^{3}{\left(x \right)}}{3 \cos^{3}{\left(x \right)}} + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
3 5
sin(1) sin (1) sin (1)
-1 + ------ - --------- + ---------
cos(1) 3 5
3*cos (1) 5*cos (1)
$$- \frac{\sin^{3}{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}} - 1 + \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{\sin^{5}{\left(1 \right)}}{5 \cos^{5}{\left(1 \right)}}$$
=
3 5
sin(1) sin (1) sin (1)
-1 + ------ - --------- + ---------
cos(1) 3 5
3*cos (1) 5*cos (1)
$$- \frac{\sin^{3}{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}} - 1 + \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{\sin^{5}{\left(1 \right)}}{5 \cos^{5}{\left(1 \right)}}$$
-1 + sin(1)/cos(1) - sin(1)^3/(3*cos(1)^3) + sin(1)^5/(5*cos(1)^5)
Use the examples entering the upper and lower limits of integration.