Mister Exam

Other calculators

Integral of sint/(2-cost) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          0                      
          /                      
         |                       
         |            sin(t)     
         |          ---------- dt
         |          2 - cos(t)   
         |                       
        /                        
POST_GRBEK_SMALL_pi              
$$\int\limits_{POST_{GRBEK SMALL \pi}}^{0} \frac{\sin{\left(t \right)}}{2 - \cos{\left(t \right)}}\, dt$$
Integral(sin(t)/(2 - cos(t)), (t, POST_GRBEK_SMALL_pi, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |   sin(t)                           
 | ---------- dt = C + log(2 - cos(t))
 | 2 - cos(t)                         
 |                                    
/                                     
$$\int \frac{\sin{\left(t \right)}}{2 - \cos{\left(t \right)}}\, dt = C + \log{\left(2 - \cos{\left(t \right)} \right)}$$
The answer [src]
-log(-2 + cos(POST_GRBEK_SMALL_pi)) + pi*I
$$- \log{\left(\cos{\left(POST_{GRBEK SMALL \pi} \right)} - 2 \right)} + i \pi$$
=
=
-log(-2 + cos(POST_GRBEK_SMALL_pi)) + pi*I
$$- \log{\left(\cos{\left(POST_{GRBEK SMALL \pi} \right)} - 2 \right)} + i \pi$$

    Use the examples entering the upper and lower limits of integration.