Integral of cos(5*x) dx
The solution
Detail solution
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
-
Add the constant of integration:
5sin(5x)+constant
The answer is:
5sin(5x)+constant
The answer (Indefinite)
[src]
/
| sin(5*x)
| cos(5*x) dx = C + --------
| 5
/
∫cos(5x)dx=C+5sin(5x)
The graph
5sin(5)
=
5sin(5)
Use the examples entering the upper and lower limits of integration.